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Abstract
We derive non-local bivalued probabilities of click or no-click outcomes—
corresponding respectively to detection or no-detection of the particles—
where each of the Einstein–Podolsky–Rosen–Bohm (EPRB) pair of particles is
observed in only one of the (2s+1) possible spin projection channels. In the case
of observations in maximum spin down channels, our results coincide exactly
with those given by Wódkiewicz [3]. We analyse the nature of correlation
between the click–no-click results with the help of non-local conditional
probabilities and information entropies. We observe that the violation of co-
planar BC inequalities is essentially due to stronger correlations between the
click–no-click outcomes in the spin projection channels |λa| = |λb|. This
observation is also supported by spin transmission Bell inequalitites.

PACS numbers: 03.65.Ud, 03.67.−a

1. Introduction

Quantum entanglement, involving a pair of spatially separated (non-interacting) particles,
described through a non-separable, joint quantum state has been a major source of discussion—
initiated with the famous Einstein–Podolsky–Rosen (EPR) argument [1]—in the conceptual
development of quantum theory. The EPR paper stimulated numerous discussions concerning
the fundamental differences between quantum and classical concepts. It has been realized
[2] that quantum correlations do not obey the classically satisfactory local realistic theories.
Non-locality underlying quantum entanglement has thus occupied the forefront of discussions.
The (EPRB) entanglement involving spin s particles had been analysed by Wódkiewicz [3],
using non-local (analyser dependent) bivalued probabilities of dichotomic variables ‘1’ and
‘0’ corresponding, respectively, to click and no-click outcomes at the detectors. Wódkiewicz
[3] employed the spin projection operators P̂ (�a), P̂ (�b), at the analyser orientations �a and �b,
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which correspond to click → 1 or no-click → 0 outcomes for the particles, as the statistical
variates and the joint transmission p(�a; �b) given by

p(�a; �b) = 〈ψEPRB|P̂ (�a) ⊗ P̂ (�b)|ψEPRB〉 (1)

are identified to be an average3 of the dichotomic variables 1, 0 in terms of non-local bivalued
probabilities. According to local hidden variable theories the joint spin transmissions are
constrained by a Bell type inequality [4]

−1 � p(�a; �b′) + p(�a′; �b′) + p(�a′; �b) − p(�a; �b) − p(�a) − p(�b) � 0, (2)

where �a, �a′, �b, �b′ denote four different orientations of the analysers. The spin transmission
Bell inequality of form (2) has been shown [3, 5] to be valid for any arbitrary spin s. However,
the projection operators used by Wódkiewicz correspond to maximum down spin projections of
particles 1, 2, defined with respect to the analyser orientations �a and �b respectively. Therefore,
the outcomes, namely click (no-click) correspond to detection (no-detection) of the particles,
in the maximum spin down projection channels alone. We emphasize that the non-locality
underlying random bivalued outcomes is not restricted to maximum spin down channels alone.
The bivalued probabilities associated with the random dichotomic outcomes from all the other
possible spin channels exhibit characteristic specific dependences on the orientations of the spin
analysers and hence exhibit non-locality. It would be interesting to analyse how these strange
quantum correlations allow for a smooth transition to the classical domain in the large spin
limit s → ∞. Projection λ = s cos θ , of a classical angular momentum vector of magnitude
s, can vary between −s to +s continuously and the study of statistical correlations between the
measurements of various spin projections of a pair of angular momentum vectors associated
with the EPRB spin-s singlet state provides a framework for understanding the underlying
non-local randomness. The purpose of this paper is to study the non-local correlations between
the random click–no-click results in all possible spin projection channels.

In section 2 we derive the joint distributions of dichotomic random variables
εa, εb (εa, εb = 1, 0), which correspond to the click–no-click outcomes in each of the spin
projection channels λa, λb. In the maximum down spin projection channel, our results coincide
exactly with those of Wódkiewicz. The click–no-click results in different spin projection
channels are analysed using non-local conditional probabilities.

We examine the behaviour of the conditional probabilities in the classical limit s → ∞.
This analysis helps us to realize that the EPRB non-local click–no-click correlations turn
smoothly into correlations between classical antiparallel angular momentum vectors in the
classical limit.

How much information is revealed by these click–no-click random outcomes? We
address this question in section 3 with the help of Gibbs–Shannon information entropies
[6, 7] constructed using bivalued probabilities. It has been realized [7, 8] that mutual
information entropy serves as a quantitative measure of entanglement. We study the strength
of correlations (using normalized mutual information entropies) in different spin projection
channels λa, λb. We observe that |λa| = |λa| channels record stronger correlations between
click–no-click outcomes. This result reflects itself in the information theoretic Braunstein–
Caves [9] inequalities: Co-planar BC inequalities are violated only for the outcomes in
the channels |λa| = |λb|. Moreover, we show that the spin transmission Bell inequality given
by equation (2) also reproduces the same result. Section 4 contains some concluding remarks.

3 Here, |ψEPRB〉 = 1√
(2s+1)

∑s
λ=−s (−1)s−λ|λ; −λ〉 denotes EPRB entangled spin singlet of two spin-s particles.
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2. Non-local bivalued probabilities for EPRB correlations

We consider projection operators P̂ 1
λa

(�a), P̂ 2
λb

(�b) (the indices 1, 2 refer to particles 1 and 2
respectively) corresponding to different spin projections, λa, λb = s, s − 1, . . . ,−s, along the
analyser orientations �a, �b, given by

P̂ 1
λa

(�a) = |�a, λa〉〈�a, λa|
P̂ 2

λb
(�b) = |�b, λb〉〈�b, λb|.

(3)

Here, |�a, λa〉, |�b, λb〉 denote the rotated spin states:

|�a, λa〉 = R̂(φa, θa, 0)|z, λa〉 =
s∑

λ1=−s

Ds
λ1λa

(φa, θa, 0)|z, λ1〉,

|�b, λb〉 = R̂(φb, θb, 0)|z, λb〉 =
s∑

λ2=−s

Ds
λ2λb

(φa, θa, 0)|z, λ2〉,
(4)

where |z, λ1〉, |z, λ2〉 denote the spin states with a common laboratory z-axis as the quantization
axis; Ds(α, β, γ ) denotes (2s + 1)-dimensional irreducible representation of rotations and
α, β, γ are the Euler angles of rotation [10].

The bivariate characteristic function [11], with the projection operators P̂ 1
λa

(�a) and P̂ 2
λb

(�b)

as statistical variates, is defined by the quantum mechanical average

φ(ra, rb) = 〈(
eiP̂ 1

λa
(�a)ra ⊗ eiP̂ 2

λb
(�b)rb

)〉 = Tr
[
ρ̂
(
eiP̂ 1

λa
(�a)ra ⊗ eiP̂ 2

λb
(�b)rb

)]
, (5)

where ρ̂ = |ψEPRB〉 〈ψEPRB| is the density operator characterizing the EPRB spin-s
correlations. From equations (3) and (4) it can be observed that

P̂ 1
λa

(�a) = R̂(φa, θa, 0)P̂ 1
λa

(z)R̂†(φa, θa, 0),

P̂ 2
λb

(�b) = R̂(φb, θb, 0)P̂ 2
λb

(z)R̂†(φb, θb, 0),
(6)

where P̂ 1
λa

(z) = |z, λa〉 < z, λa| and P̂ 2
λb

(z) = |z, λb〉 < z, λb|. Substituting equation (6) into
equation (5) we get

φ(ra, rb) = Tr
[
ρ̂
(
R̂(φa, θa, 0) eiP̂ 1

λa
(z)ra R̂†(φa, θa, 0)

)
⊗ (

R̂(φb, θb, 0) eiP̂ 2
λb

(z)rb R̂†(φb, θb, 0)
)]

= Tr
[(

R̂†(�a, �b)ρ̂R̂(�a, �b)
)(

eiP̂ 1
λa

(z)ra ⊗ eiP̂ 2
λb

(z)rb
)]

=
s∑

λ1,λ2,λ
′
1,λ

′
2=−s

(R̂†(�a, �b)ρ̂R̂(�a, �b))λ′
1λ

′
2;λ1λ2

(
eiP̂ 1

λa
(z)ra

)
λ1λ

′
1

(
eiP̂ 2

λb
(z)rb

)
λ2λ

′
2
, (7)

where we have made use of the property of the direct products, AB ⊗CD = (A⊗B)(C ⊗D)

and the cyclic property Tr(AB) = Tr(BA) of the traces. Here, R̂(�a, �b) = R̂(φa, θa, 0) ⊗
R̂(φb, θb, 0). Further, making use of the property P 2 = P of the projection operators, we get(

eiP̂ 1
λa

(z)ra
)
λ1λ

′
1
= δλ′

1λ1 + δλ′
1λa

δλ1λa
(eira − 1),(

eiP̂ 2
λb

(z)rb
)
λ2λ

′
2
= δλ2λ

′
2

+ δλ′
2λb

δλ2λb
(eirb − 1).

(8)

Substituting equation (8) into equation (7), we obtain, after rearranging the terms,

φ(ra, rb) =
∑

εa,εb=0,1

Ps
λaλb

(εa, εb) ei(εara+εbrb), (9)
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where the characteristic function φ(ra, rb) is cast in its standard statistical form [11] and
Ps

λaλb
(εa, εb), εa, εb = 0, 1, are the bivalued probabilities

Ps
λaλb

(1, 1) = (R̂†(�a, �b)ρ̂R̂(�a, �b))λaλb;λaλb

Ps
λaλb

(1, 0) =
s∑

λ2=−s

(R̂†(�a, �b)ρ̂R̂(�a, �b))λaλ2;λaλ2 − (R̂†(�a, �b)ρ̂R̂(�a, �b))λaλb;λaλb

Ps
λaλb

(0, 1) =
s∑

λ1=−s

(R̂†(�a, �b)ρ̂R̂(�a, �b))λ1λb;λ1λb
− (R̂†(�a, �b)ρ̂R̂(�a, �b))λaλb;λaλb

Ps
λaλb

(0, 0) = 1 −
s∑

λ1=−s

(R̂†(�a, �b)ρ̂R̂(�a, �b))λ1λb;λ1λb
−

s∑
λ2=−s

(R̂†(�a, �b)ρ̂R̂(�a, �b))λaλ2;λaλ2

+ (R̂†(�a, �b)ρ̂R̂(�a, �b))λaλb;λaλb
. (10)

We identify that [12]

(R̂†(�a, �b)ρ̂R̂(�a, �b))λaλb;λaλb
= |〈�a, λa; �b, λb|ψEPRB〉|2 = 1

(2s + 1)
|ds

−λb,λa
(θab)|2 (11)

where ds(θab) denotes rotation about the y-axis, which is perpendicular to the plane containing
�a and �b; θab is the angle between �a and �b. Now, one can obtain, with the help of the unitarity
of d matrices,

s∑
λ1=−s

(R̂†(�a, �b)ρ̂R̂(�a, �b))λ1λb;λ1λb
= 1

(2s + 1)

s∑
λ1=−s

∣∣ds
−λb,λ1

(θab)
∣∣2 = 1

(2s + 1)

s∑
λ2=−s

(R̂†(�a, �b)ρ̂R̂(�a, �b))λaλ2;λaλ2 = 1

(2s + 1)

s∑
λ2=−s

∣∣ds
−λ2,λa

(θab)
∣∣2 = 1

(2s + 1)
.

(12)

Substituting equations (11) and (12) into (10), the bivalued probabilities assume a simple
form:

Ps
λaλb

(1, 1) = 1

(2s + 1)
|ds

−λb,λa
(θab)|2

Ps
λaλb

(1, 0) = Ps
λaλb

(0, 1) = 1

(2s + 1)

(
1 − ∣∣ds

−λb,λa
(θab)

∣∣2 )
Ps

λaλb
(0, 0) = 1

(2s + 1)

(
(2s − 1) +

∣∣ds
−λb,λa

(θab)
∣∣2 )

.

(13)

Note that the bivalued probabilities are non-local (analyser dependent) and correspond to the
following situations:

(i) both the particles are detected (εa = 1, εb = 1),

(ii) only particle 1 is detected (εa = 1, εb = 0),

(iii) only particle 2 is detected (εa = 0, εb = 1),

(iv) both the particles are not detected (εa = 0, εb = 0),

and this detection is confined to the spin projections λa, λb of particles 1, 2 respectively4.
It can be readily verified from equation (13) that the probabilities Ps

λaλb
(εa, εb)

are normalized i.e.,
∑

εa,εb=0,1 Ps
λaλb

(εa, εb) = 1. The marginal probabilities Ps
λa

(εa) =
4 The no-click at the detectors indicate several other possibilities of detection channels available for the particle than
the one under observation.
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εb=0,1

Ps
λaλb

(εa, εb) and Ps
λb

(εb) =
∑

εa=0,1

Pj

λaλb
(εa, εb) are given by

Ps
λa

(1) = 1

2s + 1
= Ps

λb
(1), Ps

λa
(0) = 2s

2s + 1
= Ps

λb
(0), (14)

and they correspond to yes or no events for the isolated observations on each of the particles.
We observe that these marginal probabilities are independent of the detection channels λa, λb

and coincide exactly with the single folded distributions of Wódkiewicz [3].

The conditional probabilities Ps
λaλb

(εa|εb) = Ps
λa ,λb

(εa,εb)

Ps
λb

(εb)
give the probability of the

outcome εa = 1, 0 (yes or no) in the channel λa for particle 1, under the condition that
particle 2 has given rise to the result εb = 1 or 0 (yes or no) in the detection channel λb, and
are given by

Ps
λaλb

(1|1) = ∣∣ds
−λb,λa

(θab)
∣∣2

Ps
λaλb

(1|0) = 1

2s

(
1 − ∣∣ds

−λb,λa
(θab)

∣∣2 )
Ps

λaλb
(0|1) = 1 − ∣∣ds

−λb,λa
(θab)

∣∣2

Ps
λaλb

(0|0) = 1

2s

(
(2s − 1) +

∣∣ds
−λb,λa

(θab)
∣∣2 )

.

(15)

Observing now that ds
s,−s(θab) = (−1)2s

(
sin θab

2

)2s
, we obtain the following conditional

probabilities:

Ps
−s−s(1|1) =

(
sin

θab

2

)4s

Ps
−s−s(1|0) = 1

2s

[
1 −

(
sin

θab

2

)4s
]

Ps
−s−s(0|1) = 1 −

(
sin

θab

2

)4s

Ps
−s−s(0|0) = 1

2s

[
(2s − 1) +

(
sin

θab

2

)4s
]

,

(16)

for the bivalued outcomes in the maximum spin down channels i.e., for λa = λb = −s. It can
be readily verified that the conditional probabilities given by Wódkiewicz [3] agree with the
above results. For the spin channel λa = s, λb = −s, the conditional probabilities are given
by

Ps
−s−s(1|1) =

(
cos

θab

2

)4s

Ps
−s−s(1|0) = 1

2s

[
1 −

(
cos

θab

2

)4s
]

(17)

Ps
−s−s(0|1) = 1 −

(
cos

θab

2

)4s

Ps
−s−s(0|0) = 1

2s

[
(2s − 1) +

(
cos

θab

2

)4s
]

,

where we have used ds
−s,−s(θab) = (

cos θab

2

)2s
.

We further note that as a result of the symmetry [10] ds
λb,λa

= (−1)λb−λa ds
λa,λb

=
(−1)λb−λa ds

−λb,−λa
, of the d matrices, our bivalued conditional probabilities obey the following

properties:

Ps
λaλb

(εa|εb) = Ps
λbλa

(εa|εb) = Ps
−λa−λb

(εa|εb) = Ps
−λb−λa

(εa|εb). (18)

This immediately tells us that the results of measurements in the spin projection channels
(λa, λb), (λb, λa), (−λa,−λb) and (−λb,−λa) are all identical.
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(a) (b)

(c) (d)

Figure 1. Conditional probabilities of the bivalued outcomes in the spin projection channels
λa = s, λb = s, as a function of the analyser orientation angle θab for different spin values. Curve
a: spin- 1

2 , curve b: spin-1, curve c: spin- 3
2 and curve d: spin-2.

We have plotted the conditional probabilities Ps
s±s(εa|εb) for spin values s = 1

2 , 1, 3
2 , 2

and Ps
s0(εa|εb),5 for spin values s = 1, 2, 3, 4, as a function of the angle θab in figures 1–3.

We observe from figures 1 and 2 that as the spin value s increases, Ps
s±s(1|0) tends to 0

(see figures 1(b) and 2(b)) and Ps
s±s(0|0) tends to 1 (see figures 1(d) and 2(d)) for all angles

θab, indicating that in the classical limit s → ∞, the click and no-click outcomes for particle 1
in the spin channels (λa = s, λb = ±s) are, respectively, 0% and 100% certain, when particle
2 has been realized to register a no-click result. Further, it is clear from figures 1(a) and (c)
that in the classical limit s → ∞

Ps
ss(1|1) =

{
0 for all angles θab 	= 180◦,
1 for θab = 180◦;

Ps
ss(0|1) =

{
1, for all angles θab 	= 180◦,
0, for θab = 180◦;

indicating that when particle 2 registers a click in the channel λb = s, particle 1 always
registers a no-click result and never gives a click outcome in the λa = s channel, for all the
range of analyser orientations except for the anti-parallel orientation namely, θab = 180◦. A
perfect correlation (Ps

ss(1|1) → 1 for anti-parallel analyser orientations) is realized in the

5 We have calculated Ps
s0(εa |εb) using ds

0s (θab) = (−1)2s
√

2s!
s! (cos θab

2 sin θab
2 )s in equation (15).
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(a) (b)

(c) (d)

Figure 2. Conditional probabilities of the bivalued outcomes in the spin projection channels
λa = s, λb = −s, as a function of the analyser orientation angle θab for different spin values.
Curve a: spin- 1

2 , curve b: spin-1, curve c: spin- 3
2 and curve d: spin-2.

bivalued click–click outcomes only for the anti-parallel orientation in this limit. However, for
the spin projections (λa = s, λb = −s) we have (see figures 2(a) and (c))

Ps
s−s(1|1) =

{
0 for all angles θab 	= 0◦,
1 for θab = 0◦,

Ps
s−s(0|1) =

{
1 for all angles θab 	= 0◦,
0 for θab = 0◦;

in the classical limit s → ∞. In other words, when particle 2 registers a click in the channel
λb = −s, the no-click (click) outcome is always (never) realized for particle 1 in the channel
λa = s, for all the range of angles except for θab = 0◦. But for parallel analyser orientations
θab = 0◦ one realizes that there is always a click outcome and never a no-click outcome for
particle 1 (under the condition that particle 2 has registered a click result), revealing a perfect
correlation between the particles in the classical limit.

In the limit s → ∞ the conditional probabilities in the λa = s, λb = 0 channels are given
by (see figure 3)

Ps
s0(0|1) = 1 = Ps

s0(0|0) Ps
s0(1|0) = 0 = Ps

s0(1|1)

i.e., irrespective of the ‘yes’ and ‘no’ conditional outcomes in the channel λb = 0 there is a
definite ‘no’ answer in the λa = s channel for all the analyser orientations θab. In other words,
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(a) (b)

(c) (d)

Figure 3. Conditional probabilities of the bivalued outcomes in the spin projection channels
λa = s, λb = 0, as a function of the analyser orientation angle θab for different spin values. Curve
a: spin-1, curve b: spin-2, curve c: spin-3 and curve d: spin-4.

one can never find particle 1 with spin projection λb = s when particle 2 is found in λa = 0,
in the classical limit s → ∞. (Note that for finite spin values, this result is not valid and the
conditional probabilities in figure 3 are non-local functions of the analyser orientations θab.)

In the limit s → ∞, the above results reflect the perfect correlation between pairs of
classical anti-parallel angular momentum vectors and restore the validity of local hidden
variable theories for the analysis of click–no-click outcomes in the classical limit.

3. Information theoretic aspects

Considerable interest has been evinced recently [3, 7, 9, 14–17] in investigating quantum
correlations using information theory. In this section we intend to examine how much
information is contained in the bivalued click–no-click-measurements in various spin
projection channels.

We construct Gibbs–Shannon joint information entropies (in bits) [3, 7] using the bivalued
probabilities derived in section 2:

H
(
P̂ 1

λa
(�a), P̂ 2

λb
(�b)

) = −
∑

εa,εb=0,1

Ps
λaλb

(εa, εb) log2 Ps
λaλb

(εa, εb). (19)

The information contents H
(
P̂ 1

λa
(�a)

)
and H

(
P̂ 2

λb
(�b)

)
carried independently by the observables

P̂ 1
λa

(�a), P̂ 2
λb

(�b) are given by
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(a) (b)

(c)

Figure 4. Information theoretic index of correlation as a function of the analyser orientation angle
θab for different values of spin. In (a) and (b), curve a: spin- 1

2 , curve b: spin-1, curve c: spin- 3
2

and curve d: spin-2. In (c), curve a: spin-1, curve b: spin-2, curve c: spin-3 and curve d: spin-4.
The detection channels are confined to λa = s, λb = −s in (b) and λa = s, λb = 0 in (c).

H
(
P̂ 1

λa
(�a)

) = −
∑

εa=0,1

Ps
λa

(εa) log2 Ps
λa

(εa) = − 1

2s + 1
log2

(2s)2s

(2s + 1)2s+1
,

H
(
P̂ 2

λb
(�b)

) = −
∑

εb=0,1

Ps
λb

(εb) log2 Ps
λb

(εb) = − 1

2s + 1
log2

(2s)2s

(2s + 1)2s+1
,

(20)

where we have used equation (14) for marginal probabilities Ps
λa

(εa) and Ps
λb

(εb). Note that
these marginal information do not depend on the analyser orientations and give rise to the
same information in all the spin projection channels.

The conditional information entropy H
(
P̂ 1

λa
(�a)

∣∣P̂ 2
λb

(�b)
)

gives the information carried by
the random click–no-click results (i.e., measurement of the projection operator P̂ 1

λa
(�a) ) under

the condition that a click (no-click) outcome has occurred in the measurement of P̂ 2
λb

(�b), and
is defined through

H
(
P̂ 1

λa
(�a)

∣∣P̂ 2
λb

(�b)
) = −

∑
εa,εb=0,1

Ps
λaλb

(εa, εb) log2 Ps
λaλb

(εa|εb)

= H
(
P̂ 1

λa
(�a), P̂ 2

λb
(�b)

) − H
(
P̂ 2

λb
(�b)

)
. (21)
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(a) (b)

(c)

Figure 5. Information difference H(α) for different values of spin. Curve a: spin- 1
2 , curve b:

spin-1, curve c: spin- 3
2 and curve d: spin-2 in (a), (b) while curve a: spin-1, curve b: spin-2,

curve c: spin-3 and curve d: spin-4 in (c).

Figure 6. Information difference H(α) for spin-1 bivalued outcomes from the detection channels
λa = 0, λb = 0.

The mutual information entropy I
(
P̂ 1

λa
(�a), P̂ 2

λb
(�b)

)
, i.e., the average information carried in

common by the measurements of P̂ 1
λa

(�a) and P̂ 2
λb

(�b), is given by

I
(
P̂ 1

λa
(�a), P̂ 2

λb
(�b)

) = H
(
P̂ 1

λa

)
+ H

(
P̂ 2

λb

) − H
(
P̂ 1

λa
(�a), P̂ 2

λb
(�b)

)
. (22)
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(a) (b)

(c) (d)

Figure 7. Information difference H(α) for spin- 3
2 bivalued outcomes resulting from different

detection channels: in (a) λa = 3
2 , λb = 1

2 , in (b) λa = 3
2 , λb = − 1

2 , in (c) λa = 1
2 , λb = 1

2 and
in (d) λa = 1

2 , λb = − 1
2 .

Since the information entropies depend only on the angle θab between the analyser orientations,
we will suppress writing �a and �b in these quantities from now on.

It has been realized [7, 8, 15] that the mutual information entropy serves as an information
theoretic index of correlation. In order to construct a normalized information theoretic index
of correlation based on our bivalued outcomes, we note that the joint information entropy
defined in equation (19) satisfies the modified [7] Araki–Lieb inequality6,

H
(
P̂ 1

λa

) (
or H

(
P̂ 2

λb

))
� H

(
P̂ 1

λa
, P̂ 2

λb
; θab

)
� H

(
P̂ 1

λa

)
+ H

(
P̂ 2

λb

)
, (23)

which leads to the following bounds for the mutual information entropy:

0 � I
(
P̂ 1

λa
, P̂ 2

λb
; θab

)
� − 1

2s + 1
log2

(2s)2s

(2s + 1)2s+1
, (24)

by making use of the explicit form for marginal information given by equation (20). Thus, an
index of correlation 0 � Iλaλb

(θab) � 1 may be defined by normalizing the mutual information
entropy:

Iλaλb
(θab) = I

(
P̂ 1

λa
, P̂ 2

λb
; θab

)
− 1

2s+1 log2
(2s)2s

(2s+1)2s+1

= 2 +
H

(
P̂ 1

λa
, P̂ 2

λb
; θab

)
1

2s+1 log2
(2s)2s

(2s+1)2s+1

. (25)

6 In the case of measurements of quantum observables Â and B̂, belonging to subsystems 1 and 2 of an entangled
system, the information entropy H(Â, B̂) satisfies [7] the modified Araki–Lieb inequality: max(H(Â), H(B̂)) �
H(Â, B̂) � H(Â) + H(B̂). In our case, H(Â) = H(B̂) and the inequality gets simplified further.
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(a) (b)

(c) (d)

(e) ( f )

Figure 8. Information difference H(α) for spin-2 bivalued outcomes resulting from different
detection channels: in (a) λa = 2, λb = 1; in (b) λa = 2, λb = −1; in (c) λa = 1, λb = 0; in (d)
λa = 1, λb = 1; in (e) λa = 1, λb = −1 and in (f ) λa = 0, λb = 0.

In figure 4 we have plotted the correlation index Is±s(θab) for the spin values s = 1
2 , 1, 3

2 , 2
and Is0(θab) for s = 1, 2, 3, 4.

It could readily be observed that in the λa = s, λb = s channel, the correlations
between the click–no-click outcomes grow stronger—with the correlation index approaching
the maximum value 1—as θab → 180◦, i.e., when the orientation of the analysers becomes
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(a) (b)

(c)

Figure 9. The Bell difference B(α) of spin transmissions for different values of spin. Curve a:
spin- 1

2 , curve b: spin-1, curve c: spin- 3
2 and curve d: spin-2 in (a), (b), while curve a: spin-1,

curve b: spin-2, curve c: spin-3 and curve d: spin-4 in (c) and (d).

Figure 10. Bell difference B(α) for spin-1 bivalued outcomes from the detection channels
λa = 0, λb = 0.

nearly anti-parallel, whereas in the λa = s, λb = −s channel, the correlation index attains its
maximum value 1 for θab = 0◦, i.e, when the analysers are parallel. Note that the index of
correlation is less than 0.3 and indicates that the correlation between the bivalued outcomes
in the λa = s, λb = 0 channel is quite poor.



2538 A R Usha Devi and S Sirsi

(a) (b)

(c) (d)

Figure 11. Spin transmission difference B(α) for spin- 3
2 bivalued outcomes resulting from different

detection channels: In (a) λa = 3
2 , λb = 1

2 , in (b) λa = 3
2 , λb = − 1

2 , in (c) λa = 1
2 , λb = 1

2 and
in (d) λa = 1

2 , λb = − 1
2 .

Information theoretic Braunstein–Caves (BC) inequalities [9] involve conditional
information entropies H(Â|B̂) and dictate that the subsystem observables (denoted by Â

and B̂) of any entangled system can carry information in accordance with

H(Â|B̂) � H(Â|B̂ ′) + H(Â′|B̂ ′) + H(Â′|B̂), (26)

so as to be consistent with local realistic theories. It has been observed [9] that correlations

between the spin components �̂S1 · �a, �̂S2 · �b of subsystems 1 and 2 of a EPRB spin singlet state
violate BC inequalities. We would like to investigate the click–no-click outcomes in various
possible spin projection channels with the intention of isolating the correlations that lead to
violation of the BC inequality.

For the bivalued outcomes resulting from the spin projection channels λa and λb the BC
inequality has the form

Hλaλb
(θab) � Hλaλb

(θab′) + Hλaλb
(θa′b′) + Hλaλb

(θa′b), (27)

where we have expressed the conditional information entropies through H
(
P̂ 1

λa

∣∣ P̂ 2
λb

; θab

) ≡
Hλaλb

(θab) for simplicity. Here, the angles θab = cos−1(�a · �b), θab′ = cos−1(�a · �b′), θa′b′ =
cos−1(�a′·�b′) and θa′b = cos−1(�a′ · �b) correspond to four different orientations of the analysers.
For the special case when the successive vectors �a, �b′, �a′, �b are coplanar and are separated by
an angle α (i.e., �a · �b′ = �a′ · �b′ = �a′ · �b = cos α and �a · �b = cos 3α), the BC inequality is
violated if

Hλaλb
(α) ≡ Hλaλb

(3α) − 3Hλaλb
(α) (28)

is positive. We have plottedHs±s (α) for spin values s = 1
2 , 1, 3

2 , 2 andHs0(α) for s = 1, 2, 3, 4
in figure 5. We note that the bivalued correlations in the λa = s, λb = 0 channels do not
violate the BC inequality. To get further insight into this observation we have plotted Hλaλb

(α)

for all the channels—other than the ones already considered in figures 5—when s = 1, 3
2 , 2,
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(a) (b)

(c) (d)

(e) ( f )

Figure 12. The Bell difference B(α) for spin-2 bivalued outcomes resulting from different
detection channels: in (a) λa = 2, λb = 1; in (b) λa = 2, λb = −1; in (c) λa = 1, λb = 0; in (d)
λa = 1, λb = 1; in (e) λa = 1, λb = −1 and in (f ) λa = 0, λb = 0.

in figures 6–8. We note that the BC inequalities are violated only when |λa| = |λb|. In
other words, the bivalued correlations in the |λa| 	= |λb| channels appear to be classical in
nature.

Local realistic theories predict that the spin transmissions satisfy the Bell type inequality
given by equation (2) and it has been shown [5] that this inequality is violated for all values
of s, even though the strength of violation reduces with increasing spin value s. We identify
that the violation of inequality (2) is verified only for spin transmissions in the maximum spin
down channels. Noting that the quantum mechanical spin transmissions of equation (1) are
given by

p(�a, �b) =
∑

εa,εb=0,1

Ps
λaλb

(εa, εb)εaεb = Ps
λaλb

(1, 1),

p(�a) =
∑

εa,εb=0,1

Ps
λaλb

(εa, εb)εa = Ps
λa

(1) = 1

2s + 1

p(�b) =
∑

εa,εb=0,1

Ps
λaλb

(εa, εb)εb = Ps
λb

(1) = 1

2s + 1
,

(29)
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we are in a position to explore the validity of the Bell inequality (2) for quantum mechanical
spin transmissions in various possible channels λa, λb, (−s � λa, λb � s). For the co-planar
geometry ( �a · �b′ = �a′ · �b′ = �a′ · �b = cos α and �a · �b = cos 3α) we express the Bell difference
of spin transmissions as

Bs
λaλb

(α) = 3p(α) − p(3α) − 2

2s + 1
, (30)

so that inequality (2) assumes the form

−1 � Bs
λaλb

(α) � 0. (31)

In figures 9–12 we have plotted the Bell difference Bs
λaλb

(α) of spin transmissions in
various channels we had analysed in connection with the information theoretic co-planar
BC inequalities. Interestingly, the violation of spin transmission Bell inequalities indeed
support the result realized through the information theoretic BC inequalities, namely, only
the spin channels |λa| = |λb| record non-classical correlations. In this regard, therefore, the
information theoretic BC inequality (27) and the Bell inequality (2) are equivalent7.

4. Conclusion

We have generalized the work of Wódkiewicz [3] and studied the bivalued click or no-click
outcomes—resulting from a EPRB spin-s singlet state—in different spin projection channels
λa, λb. This study provides a framework for the analysis of non-locality underlying EPRB
correlations. In the case of observations in maximum spin down channels, we have shown
that our results agree with those of Wódkiewicz [3]. We have analysed the information
theoretic aspects of click–no-click results using Gibbs–Shannon entropies. This leads us to
the observation that the coplanar BC inequalities are violated for the bivalued correlations
only in the |λa| = |λb| channels. We have also verified that the violation of the coplanar spin
transmission Bell inequality indeed reflects the non-classical nature of the bivalued outcomes
in the spin channels |λa| = |λb|.
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